Compliance Hub

Top Fraud Prevention Vendors and What Sets the Best Solutions Apart

Site Logo
Tookitaki
7 min
read

In the digital age, financial crime is a growing concern. Fraudulent activities are becoming increasingly sophisticated, posing significant challenges to financial crime investigators.

The key to combating this menace lies in staying ahead of the curve. This involves understanding the latest trends and technologies in the fintech industry, particularly those related to fraud detection and prevention.

One crucial aspect of this is identifying the best fraud prevention company. These companies offer innovative solutions to detect and prevent financial crimes, enhancing the effectiveness of investigative techniques and strategies.

This article aims to provide comprehensive insights into the best fraud prevention companies. It will delve into their operations, the services they offer, and how they can be leveraged to enhance fraud detection and prevention strategies.

We will also explore the role of technology in fraud detection, the importance of regulatory compliance, and the challenges faced by financial crime investigators.

By the end of this article, you will be better equipped to navigate the complex landscape of financial crime prevention, and to select the best fraud prevention company to meet your needs.

Understanding the Importance of Fraud Prevention in Today's Financial Landscape

Financial fraud is a serious issue that impacts banks, fintech companies, and their customers worldwide. As digital transactions increase, so do the methods used by fraudsters to exploit vulnerabilities. In recent years, the financial sector has seen a sharp rise in various forms of fraud, including account takeover, card fraud, and unauthorized payments. These fraudulent activities not only lead to significant financial losses but also damage the reputation of institutions, erode customer trust, and can result in hefty regulatory penalties.

Staying ahead of these threats requires more than just basic security measures. Financial institutions need advanced fraud prevention solutions that can detect and prevent suspicious activities in real time. This makes the choice of a fraud prevention vendor a critical decision for any financial institution looking to safeguard its operations and customers.

Understanding Fraud Prevention Companies

Fraud prevention companies are key players in the financial industry. They provide tools and technologies designed to detect and prevent fraudulent activities. Their primary role is to safeguard financial institutions and consumers from financial crimes.

In today’s digital economy, fraud prevention is more important than ever. With the rise in online transactions, the threat of cyber fraud has escalated. Fraud prevention companies are crucial in protecting sensitive financial data and maintaining consumer trust.

When identifying the best fraud prevention company, several criteria come into play. First, look for a company that offers robust technology and innovative solutions. The ability to detect anomalies in real time is a significant advantage.

Additionally, a company's reputation in the market matters. Consider their track record and customer reviews. Successful implementations and industry recognition are also strong indicators.

Finally, assess the company’s adaptability to evolving fraud tactics. An effective fraud prevention company is always a step ahead, continuously enhancing its solutions to address new challenges. This ability to innovate and adapt makes these companies indispensable in the fight against financial fraud.

{{cta-first}}

Key Features to Look for in Fraud Prevention Vendors

Importance of Real-Time Monitoring and AI Capabilities

When selecting a fraud prevention vendor, one of the most crucial features to consider is real-time monitoring powered by artificial intelligence (AI). Financial fraud happens in an instant, and a solution that can detect and respond to threats in real time is essential.

AI enhances this capability by learning from past data and continuously adapting to new threats, making it possible to identify suspicious patterns as they occur. This helps prevent fraud and minimises the impact by allowing institutions to take swift action.

Integration with Existing Systems and Ease of Use

Another key factor is how well the fraud prevention solution integrates with your existing systems. A solution that seamlessly fits into your current infrastructure without requiring extensive modifications is ideal.

This reduces the implementation time and costs, allowing your team to focus on mitigating risks rather than dealing with technical challenges. Moreover, a user-friendly interface and straightforward processes ensure that your compliance and security teams can efficiently operate the system, maximising its effectiveness.

Comprehensive Risk Coverage and Scalability

Finally, a robust fraud prevention solution must offer comprehensive risk coverage across various fraud scenarios. This includes everything from account takeover and card fraud to more complex schemes like money laundering.

The solution should also be scalable, and able to grow with your institution as transaction volumes increase. A scalable system helps you keep high levels of fraud detection and prevention. This is true even as your operations grow. You won’t have to worry about losing performance.

A Comparative Look at Leading Fraud Prevention Companies

Leading Fraud Prevention Companies

  1. Tookitaki: Tookitaki stands at the forefront of fraud prevention by combining community intelligence with advanced AI. Its Transaction Monitoring solution integrates with the Anti-Financial Crime (AFC) Ecosystem, a global network of AML and fraud experts, to provide comprehensive, real-time risk coverage. Tookitaki’s solution is designed for scalability, enabling financial institutions to handle billions of transactions efficiently while adapting quickly to emerging threats through flexible fraud detection typologies.
  2. ComplyAdvantage: ComplyAdvantage specializes in providing real-time insights and risk assessments to help financial institutions navigate complex regulatory environments. The company’s solutions are designed to ensure compliance while maintaining security, making it a trusted partner for institutions facing the challenges of modern financial crime.
  3. Featurespace: Featurespace is a leader in adaptive behavioural analytics, offering automated deep behavioural networks for risk management. Founded in 2008, the company’s innovative technology helps institutions detect and prevent fraud by analyzing and adapting to behavioural patterns, making it a strong player in the fraud prevention space.
  4. Feedzai: Feedzai develops sophisticated risk management tools aimed at preventing fraud and money laundering in financial transactions. Founded in 2011, the company leverages AI and machine learning to provide real-time fraud detection, serving over 600 employees and backed by investors such as KKR, Sapphire Ventures, and Citi Ventures.
  5. Sardine: Sardine is a relatively new player in the fraud prevention and compliance software market, focusing on the digital economy. Founded in 2020, Sardine quickly gained traction with support from investors like Andreessen Horowitz and Eric Schmidt. The company’s software is designed to protect digital transactions from fraud and ensure compliance in a rapidly evolving financial landscape.
  6. Hawk: Based in Germany, Hawk AI specializes in money-laundering detection and investigation. Founded in 2018, the company is supported by investors such as Sands Capital and BlackFin Capital Partners. Hawk AI’s platform uses advanced technologies to detect and investigate suspicious activities, providing financial institutions with a robust defense against money laundering.
  7. Onfido: Onfido, founded in 2012 in London, is a leader in digital identity verification. The company’s automated solutions are trusted by institutions worldwide to verify identities and prevent fraud. Onfido’s technology is supported by major investors like TPG Growth, SBI, and Salesforce, making it a key player in the digital identity space.
  8. Abrigo: Abrigo, based in Texas, provides market-leading solutions for compliance, credit risk, and lending. Founded with support from investors like Carlyle and Accel-KKR, Abrigo enables financial institutions to manage risk and compliance effectively while driving growth. Its solutions are widely used across the financial sector to ensure robust risk management and compliance.
  9. SymphonyAI: SymphonyAI, which acquired NetReveal in 2022, focuses on delivering AI-driven solutions across various sectors, including financial crime detection. Founded in 2017 with significant capital investment, SymphonyAI is dedicated to providing enterprise-level AI solutions, positioning itself as a powerful player in the fight against financial crime.

Fraud Prevention Vendors and Their Ecosystem

Fraud prevention vendors play a crucial role in the fintech ecosystem. They provide specialized tools and technologies to tackle diverse fraud challenges. These vendors help businesses strengthen their defences against financial crimes.

Partnering with fraud prevention vendors offers numerous advantages. They bring expertise that organisations might lack internally. This external support can significantly enhance the efficiency and effectiveness of fraud prevention strategies.

Vendors often deliver scalable solutions tailored to specific industry needs. This customisation ensures that businesses receive the most relevant protection. As fraud tactics evolve, these vendors continuously innovate to keep pace with new threats.

In addition to technology, vendors offer valuable insights into fraud trends. Their broad exposure to various sectors allows them to predict emerging threats. By leveraging this knowledge, businesses can remain vigilant and proactive in their fraud prevention efforts.

Why Choose Tookitaki for Transaction Monitoring?

Transform AML and Fraud Prevention with FinCense

Tookitaki’s Transaction Monitoring solution, powered by its FinCense platform, offers a revolutionary approach to AML and fraud prevention. Unlike traditional systems that rely on static rules and limited datasets, Tookitaki leverages advanced AI and collective intelligence from its Anti-Financial Crime (AFC) Ecosystem to stay ahead of emerging threats. This dynamic approach ensures that financial institutions are not just reacting to fraud but are proactively preventing it.

With FinCense, financial institutions can significantly reduce their risk exposure. The platform’s AI engine provides automated threshold recommendations, enabling institutions to detect suspicious patterns with up to 90% accuracy in real time. This high level of accuracy drastically lowers false positive rates, reducing the operational burden on compliance teams and allowing them to focus on genuine threats.

Comprehensive Risk Coverage and Real-Time Fraud Detection

One of the standout features of Tookitaki’s solution is its comprehensive risk coverage. By integrating with the AFC Ecosystem, Tookitaki ensures that institutions have access to the latest fraud typologies and scenarios. This community-powered approach means that new and emerging threats are quickly identified and mitigated, offering 100% risk coverage.

In addition to comprehensive coverage, Tookitaki excels in real-time fraud detection. The AI engine continuously analyses transaction data, automatically tuning detection thresholds to adapt to new patterns of fraudulent activity. This ensures that monitoring remains effective over time, significantly reducing the need for manual intervention and minimising operational overhead.

{{cta-ebook}}

Seamless Scalability for Growing Financial Institutions

Tookitaki’s Transaction Monitoring solution is built to scale effortlessly, making it ideal for financial institutions of all sizes. Whether you're a small fintech startup or a large multinational bank, Tookitaki’s robust data engineering tech stack can handle billions of transactions without compromising performance. As your institution grows, the platform’s ability to scale horizontally ensures that you can maintain high levels of fraud detection and prevention.

Furthermore, Tookitaki’s platform allows institutions to launch new products in new regions quickly by implementing typologies from the AFC Ecosystem. This flexibility ensures that as your business expands, you can maintain the same high level of security and compliance without any additional complexity.

Protect Your Financial Institution with Tookitaki

In today’s rapidly evolving financial landscape, protecting your institution from fraud is more challenging—and more critical—than ever. Choosing the right fraud prevention solution can make all the difference in staying ahead of sophisticated criminal tactics. Tookitaki’s Transaction Monitoring solution offers a powerful, AI-driven approach that not only detects and prevents fraud in real time but also adapts to new threats as they emerge. By leveraging the collective intelligence of the Anti-Financial Crime (AFC) Ecosystem, Tookitaki provides comprehensive risk coverage that is unmatched in the industry.

For financial institutions looking to enhance their AML and fraud prevention strategies, Tookitaki offers a solution that is not only highly effective but also scalable and flexible enough to grow with your business. With features like automated threshold tuning, real-time fraud detection, and seamless scalability, Tookitaki stands out as the best choice for institutions serious about protecting their assets and reputation.

Don’t wait until fraud impacts your operations—take proactive steps today. Explore Tookitaki’s Transaction Monitoring solution to see how it can transform your approach to AML and fraud prevention. Contact us for a demo or consultation and start securing your financial institution with the most advanced tools available.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
18 Sep 2025
6 min
read

Fraud Detection Using Machine Learning in Banking: Malaysia’s Next Line of Defence

Fraudsters think fast, but machine learning thinks faster.

Malaysia’s Growing Fraud Challenge

Fraud has become one of the biggest threats facing Malaysia’s banking sector. The rise of instant payments, QR codes, and cross-border remittances has created new opportunities for consumers — and for criminals.

Money mule networks are expanding, account takeover fraud is becoming more common, and investment scams continue to claim victims across the country. Bank Negara Malaysia (BNM) has increased its scrutiny, aligning the country more closely with global standards set by the Financial Action Task Force (FATF).

In this climate, banks need smarter systems. Traditional fraud detection methods are no longer enough. To stay ahead, Malaysian banks are turning to fraud detection using machine learning as their next line of defence.

Talk to an Expert

Why Traditional Fraud Detection Falls Short

For decades, banks relied on rule-based fraud detection systems. These systems flag suspicious activity based on pre-defined rules, such as:

  • Transactions above a certain amount
  • Transfers to high-risk jurisdictions
  • Multiple failed login attempts

While useful, rule-based systems have clear limitations:

  • They are static: Criminals quickly learn how to work around rules.
  • They create false positives: Too many legitimate transactions are flagged, overwhelming compliance teams.
  • They are reactive: Rules are only updated after a new fraud pattern is discovered.
  • They lack adaptability: In a fast-changing environment, rigid systems cannot keep pace.

The result is compliance fatigue, higher costs, and gaps that criminals exploit.

How Machine Learning Transforms Fraud Detection

Machine learning (ML) changes the game by allowing systems to learn from data and adapt over time. Instead of relying on static rules, ML models identify patterns and anomalies that may signal fraud.

How ML Works in Banking Fraud Detection

  1. Data Collection
    ML models analyse vast amounts of data, including transaction history, customer behaviour, device information, and geolocation.
  2. Feature Engineering
    Key attributes are extracted, such as transaction frequency, average values, and unusual login behaviour.
  3. Model Training
    Algorithms are trained on historical data, distinguishing between legitimate and fraudulent activity.
  4. Real-Time Detection
    As transactions occur, ML models assign risk scores and flag suspicious cases instantly.
  5. Continuous Learning
    Models evolve by incorporating feedback from confirmed fraud cases, improving accuracy over time.

Supervised vs Unsupervised Learning

  • Supervised learning: Models are trained using labelled data (fraud vs non-fraud).
  • Unsupervised learning: Models identify unusual patterns without prior labelling, useful for detecting new fraud types.

This adaptability is critical in Malaysia, where fraud typologies evolve quickly.

Key Benefits of Fraud Detection Using Machine Learning

The advantages of ML-driven fraud detection are clear:

1. Real-Time Detection

Transactions are analysed instantly, allowing banks to stop fraud before funds are withdrawn or transferred abroad.

2. Adaptive Learning

ML models continuously improve, detecting new scam typologies that rules alone would miss.

3. Improved Accuracy

By reducing false positives, banks save time and resources while improving customer experience.

4. Scalability

Machine learning can handle millions of transactions daily, essential in a high-volume market like Malaysia.

5. Holistic View of Risk

ML integrates multiple data points to create a comprehensive risk profile, spotting complex fraud networks.

Fraud Detection in Malaysia’s Banking Sector

Malaysia faces unique pressures that make ML adoption urgent:

  • Instant payments and QR adoption: DuitNow QR has become a national standard, but speed increases vulnerability.
  • Cross-border laundering risks: Remittance corridors expose banks to international mule networks.
  • Sophisticated scams: Criminals are using social engineering and even deepfakes to deceive customers.
  • BNM expectations: Regulators want financial institutions to adopt proactive, risk-based monitoring.

In short, fraud detection using machine learning is no longer optional. It is a strategic necessity for Malaysia’s banks.

ChatGPT Image Sep 17, 2025, 04_29_19 PM

Step-by-Step: How Banks Can Implement ML-Driven Fraud Detection

For Malaysian banks considering machine learning adoption, the path is practical and achievable:

Step 1: Define the Risk Landscape

Identify the most pressing fraud threats, such as mule accounts, phishing, or account takeover, and align with BNM priorities.

Step 2: Integrate Data Sources

Consolidate transaction, customer, device, and behavioural data into a single framework. ML models thrive on diverse datasets.

Step 3: Deploy Machine Learning Models

Use supervised models for known fraud patterns and unsupervised models for detecting new anomalies.

Step 4: Create Feedback Loops

Feed confirmed fraud cases back into the system to improve accuracy and reduce false positives.

Step 5: Ensure Explainability

Adopt systems that provide clear reasons for alerts. Regulators must understand how decisions are made.

Tookitaki’s FinCense: Machine Learning in Action

This is where Tookitaki’s FinCense makes a difference. Built as the trust layer to fight financial crime, FinCense is an advanced compliance platform powered by AI and machine learning.

Agentic AI Workflows

FinCense uses intelligent AI agents that automate alert triage, generate investigation narratives, and recommend next steps. Compliance teams save hours on each case.

Federated Learning with the AFC Ecosystem

Through the AFC Ecosystem, FinCense benefits from shared intelligence contributed by hundreds of institutions. Malaysian banks gain early visibility into fraud typologies emerging in ASEAN.

Explainable AI

Unlike black-box systems, FinCense provides full transparency. Every flagged transaction includes a clear rationale, making regulator engagement smoother.

End-to-End Fraud and AML Integration

FinCense unifies fraud detection and AML monitoring, offering a single view of risk. This reduces duplication and strengthens overall defences.

ASEAN Market Fit

Scenarios and typologies are tailored to Malaysia’s realities, from QR code misuse to remittance layering.

Scenario Walkthrough: Account Takeover Fraud

Imagine a Malaysian customer’s online banking credentials are stolen through phishing. Fraudsters attempt multiple transfers to mule accounts.

With traditional systems:

  • The activity may only be flagged after large sums are lost.
  • Manual review delays the response.

With FinCense’s ML-powered detection:

  • Unusual login behaviour is flagged immediately.
  • Transaction velocity analysis highlights the abnormal transfers.
  • Federated learning recognises the mule pattern from other ASEAN cases.
  • Agentic AI prioritises the alert, generates a narrative, and recommends blocking the transaction.

Result: The fraud attempt is stopped before funds leave the bank.

Impact on Banks and Customers

The benefits of fraud detection using machine learning extend across the ecosystem:

  • Banks reduce fraud losses and compliance costs.
  • Customers gain confidence in digital banking, encouraging adoption.
  • Regulators see stronger risk management and timely reporting.
  • The economy benefits from increased trust in financial services.

The Road Ahead for ML in Fraud Detection

Looking forward, machine learning will play an even larger role in banking fraud prevention:

  • Integration with open banking data will provide richer insights.
  • AI-powered scams will push banks to deploy equally intelligent defences.
  • Collaboration across borders will become critical, especially in ASEAN.
  • Hybrid AI-human models will balance efficiency with oversight.

Malaysia has the chance to position itself as a regional leader in adopting ML for financial crime prevention.

Conclusion

Fraud detection using machine learning in banking is no longer a futuristic concept. It is the practical, powerful response Malaysia’s banks need today. Traditional rule-based systems cannot keep up with evolving scams, instant payments, and cross-border laundering risks.

With Tookitaki’s FinCense, Malaysian banks gain an industry-leading trust layer that combines machine learning, explainability, and regional intelligence. The future of fraud prevention is here, and it starts with embracing smarter, adaptive technology.

Fraud Detection Using Machine Learning in Banking: Malaysia’s Next Line of Defence
Blogs
18 Sep 2025
6 min
read

Federated Learning in AML: A Smarter Way to Fight Financial Crime in Australia

Federated learning is transforming AML by enabling banks to share intelligence without sharing sensitive data.

Introduction

Financial crime is becoming more sophisticated every year. In Australia, criminals exploit the New Payments Platform (NPP), cross-border corridors, and emerging technologies to launder billions of dollars. Banks and fintechs are under immense pressure from AUSTRAC to detect and report suspicious activity in real time.

Yet no single institution has the complete picture. Criminals spread activity across multiple banks and channels, making it difficult to detect patterns when working in isolation. This is where federated learning in AML comes in. It allows institutions to collaborate on intelligence without exposing customer data, creating a collective shield against money laundering.

Talk to an Expert

What is Federated Learning in AML?

Federated learning is an artificial intelligence technique where multiple parties train a shared model without sharing their raw data. Each institution trains the model locally, and only the model updates — not the underlying data — are shared.

In AML, this means:

  • Banks contribute insights into suspicious patterns.
  • Sensitive customer data remains within each institution.
  • A shared model learns from multiple perspectives, strengthening detection.

It is compliance collaboration without compromising privacy.

Why Australia Needs Federated Learning

1. Fragmented Data

Each bank only sees part of the financial ecosystem. Criminals exploit these gaps by spreading transactions across multiple institutions.

2. Rising Compliance Costs

Institutions are spending billions annually on AML compliance. Shared learning reduces duplication of effort.

3. AUSTRAC’s Push for Innovation

AUSTRAC encourages industry collaboration to strengthen financial crime prevention. Federated learning aligns perfectly with this goal.

4. Real-Time Payment Risks

With NPP and PayTo, money moves instantly. Federated learning enables faster identification of emerging fraud typologies.

5. Protecting Privacy

Australia’s data protection regulations make raw data sharing complex. Federated learning solves this by keeping sensitive data local.

How Federated Learning Works in AML

  1. Local Training
    Each institution trains an AI model on its transaction and customer data.
  2. Model Updates Shared
    Only the learned patterns (model weights) are sent to a central aggregator.
  3. Global Model Improved
    The aggregator combines updates from all banks into a stronger model.
  4. Distribution Back to Banks
    The improved model is sent back to each bank for use in detection.

This cycle repeats, continually improving AML detection across the industry.

ChatGPT Image Sep 17, 2025, 04_00_31 PM

Use Cases of Federated Learning in AML

  1. Mule Account Detection
    Identifies networks of mule accounts across different banks.
  2. Cross-Border Laundering
    Tracks layering activity spread across institutions and jurisdictions.
  3. Fraud Typology Sharing
    Allows banks to learn from each other’s fraud cases without sharing customer data.
  4. Sanctions Screening Enhancement
    Improves detection of high-risk entities that use aliases or complex networks.
  5. Customer Risk Profiling
    Builds more accurate risk scores by learning from industry-wide patterns.

Benefits of Federated Learning in AML

  • Collective Intelligence: Stronger models built from multiple perspectives.
  • Privacy Protection: Raw customer data never leaves the institution.
  • Faster Adaptation: New fraud typologies shared quickly across banks.
  • Cost Efficiency: Reduces duplication of AML technology spend.
  • Regulatory Alignment: Demonstrates proactive industry collaboration.

Challenges of Federated Learning

  • Data Quality: Poor-quality local data reduces model accuracy.
  • Technical Complexity: Requires strong IT infrastructure for secure collaboration.
  • Coordination Barriers: Banks must align on frameworks and standards.
  • Explainability: AI models must remain transparent for AUSTRAC compliance.
  • Adoption Costs: Initial investment can be high for smaller institutions.

Case Example: Community-Owned Banks Driving Innovation

Community-owned banks like Regional Australia Bank and Beyond Bank are early adopters of collaborative compliance models. By leveraging advanced platforms, they can access federated intelligence that strengthens their detection capabilities without requiring massive in-house teams.

Their success shows that federated learning is not only for Tier-1 institutions. Smaller banks can benefit just as much from this collaborative approach.

Spotlight: Tookitaki’s AFC Ecosystem and FinCense

Tookitaki has pioneered federated learning in AML through its AFC Ecosystem and FinCense platform.

  • AFC Ecosystem: A global community of compliance experts contributing real-world scenarios and typologies.
  • Federated Learning Engine: Allows banks to benefit from collective intelligence without sharing raw data.
  • Real-Time Monitoring: Detects suspicious activity across NPP, PayTo, remittance corridors, and crypto.
  • FinMate AI Copilot: Assists investigators with summarised alerts and regulator-ready reports.
  • AUSTRAC-Ready: Generates SMRs, TTRs, and IFTIs with full audit trails.
  • Cross-Channel Coverage: Unifies detection across banking, wallets, cards, remittances, and crypto.

By combining federated learning with Agentic AI, FinCense delivers industry-leading AML capabilities tailored for the Australian market.

Best Practices for Adopting Federated Learning in AML

  1. Start with Partnerships: Collaborate with trusted peers to test federated models.
  2. Focus on Data Quality: Ensure local models are trained on clean, structured data.
  3. Adopt Explainable AI: Maintain regulator confidence by making outputs transparent.
  4. Engage Regulators Early: Keep AUSTRAC informed of federated learning initiatives.
  5. Invest in Infrastructure: Secure, scalable platforms are essential for success.

The Future of Federated Learning in AML

  1. Industry-Wide Collaboration: More banks will join federated networks to share intelligence.
  2. Real-Time Typology Sharing: Federated systems will distribute new fraud scenarios instantly.
  3. Cross-Sector Expansion: Insurers, payment firms, and fintechs will join federated AML networks.
  4. Global Interoperability: Federated learning models will connect across borders.
  5. AI-First Investigations: AI copilots will use federated intelligence to guide case investigations.

Conclusion

Federated learning in AML represents a breakthrough in the fight against financial crime. By combining intelligence from multiple banks without exposing customer data, it creates a collective defence that criminals cannot easily evade.

In Australia, where AUSTRAC demands stronger monitoring and fraudsters exploit instant payments, federated learning provides a powerful solution. Community-owned banks like Regional Australia Bank and Beyond Bank demonstrate that collaboration is possible for institutions of all sizes.

Platforms like Tookitaki’s FinCense are making federated learning a reality, turning compliance from a siloed burden into a shared advantage.

Pro tip: The future of AML will be built on collaboration. Federated learning is the foundation that makes industry-wide intelligence sharing possible.

Federated Learning in AML: A Smarter Way to Fight Financial Crime in Australia
Blogs
17 Sep 2025
6 min
read

The Investigator’s Edge: Why AML Investigation Software Is a Must-Have for Singapore’s Banks

In the fight against financial crime, detection is only half the battle. The real work starts with the investigation.

Singapore’s financial institutions are facing unprecedented scrutiny when it comes to anti-money laundering (AML) compliance. As regulators raise the bar and criminals get smarter, the ability to investigate suspicious transactions swiftly and accurately is now a non-negotiable requirement. This is where AML investigation software plays a critical role.

In this blog, we explore why AML investigation software matters more than ever in Singapore, what features banks should look for, and how next-generation tools are transforming compliance teams from reactive units into proactive intelligence hubs.

Talk to an Expert

Why Investigation Capabilities Matter in AML Compliance

When a transaction monitoring system flags an alert, it kicks off an entire chain of actions. Analysts must determine whether it's a false positive or a genuine case of money laundering. This requires gathering context, cross-referencing multiple systems, documenting findings, and preparing reports for auditors or regulators.

Doing all of this manually is not only time-consuming, but also increases the risk of human error and compliance gaps. For banks operating in Singapore's high-stakes environment, where MAS expects prompt and well-documented responses, this is a risk few can afford.

Key Challenges Faced by AML Investigators in Singapore

1. Alert Overload

Analysts are often overwhelmed by a high volume of alerts, many of which turn out to be false positives. This slows down investigations and increases backlogs.

2. Fragmented Data Sources

Information needed for a single investigation is typically spread across customer databases, transaction logs, sanctions lists, and case notes, making it difficult to form a complete picture quickly.

3. Manual Documentation

Writing investigation summaries and preparing Suspicious Transaction Reports (STRs) can take hours, reducing the time available for deeper analysis.

4. Audit and Regulatory Pressure

MAS and other regulators expect detailed, traceable justifications for every action taken. Missing documentation or inconsistent processes can lead to penalties.

What AML Investigation Software Does

AML investigation software is designed to streamline, standardise, and enhance the process of investigating suspicious activities. It bridges the gap between alert and action.

Core Functions Include:

  • Case creation and automated alert ingestion
  • Intelligent data aggregation from multiple systems
  • Risk scoring and prioritisation
  • Investigation checklists and audit trails
  • Natural language summaries for STR filing
  • Collaborative case review and escalation tools

Must-Have Features in AML Investigation Software

When evaluating solutions, Singaporean banks should look for these critical capabilities:

1. Smart Alert Triage

The system should help investigators prioritise high-risk alerts by assigning risk scores based on factors such as transaction patterns, customer profile, and historical activity.

2. Contextual Data Aggregation

A strong tool pulls in data from across the bank — including core banking systems, transaction logs, KYC platforms, and screening tools — to provide investigators with a consolidated view.

3. Natural Language Summarisation

Leading software uses AI to generate readable, regulator-friendly narratives that summarise key findings, reducing manual work and improving consistency.

4. Audit-Ready Case Management

Every step taken during an investigation should be logged and traceable, including decision-making, reviewer notes, and attached evidence.

5. Integration with STR Reporting Systems

The software should support direct integration with platforms such as GoAML, used in Singapore for suspicious transaction reporting.

ChatGPT Image Sep 17, 2025, 11_47_45 AM

How Tookitaki's FinCense Platform Elevates AML Investigations

Tookitaki’s FinCense platform is designed with Singapore’s regulatory expectations in mind and includes a specialised Smart Disposition Engine for AML investigations.

Key Features:

  • AI Copilot (FinMate)
    Acts as an intelligent assistant that helps compliance teams assess red flags, suggest investigative steps, and provide context for alerts.
  • Smart Narration Engine
    Automatically generates STR-ready summaries, saving hours of manual writing while ensuring consistency and auditability.
  • Unified View of Risk
    Investigators can see customer profiles, transaction history, typologies triggered, and sanction screening results in one interface.
  • Scenario-Based Insight
    Through integration with the AFC Ecosystem, the system maps alerts to real-world money laundering typologies relevant to the region.
  • Workflow Customisation
    Investigation steps, user roles, and escalation logic can be tailored to the bank’s internal policies and team structure.

Benefits for Compliance Teams

By implementing AML investigation software like FinCense, banks in Singapore can achieve:

  • Up to 50 percent reduction in investigation time
  • Enhanced quality and consistency of STRs
  • Faster closure of true positives
  • Lower regulatory risk and better audit outcomes
  • Improved collaboration across compliance, risk, and operations

Checklist: Is Your Investigation Process Ready for 2025?

Ask these questions to evaluate your current system:

  • Are investigators manually pulling data from multiple systems?
  • Is there a standard template for documenting cases?
  • How long does it take to prepare an STR?
  • Can you trace every decision made during an investigation?
  • Are your analysts spending more time writing than investigating?

If any of these answers raise red flags, it may be time to upgrade.

Conclusion: Better Tools Build Stronger Compliance

AML investigation software is no longer a nice-to-have. It is a strategic enabler for banks to stay ahead of financial crime while meeting the rising expectations of regulators, auditors, and customers.

In Singapore's rapidly evolving compliance landscape, banks that invest in smart, AI-powered investigation tools will not only keep up. They will lead the way.

Ready to take your AML investigations to the next level? The future is intelligent, integrated, and investigator-first.

The Investigator’s Edge: Why AML Investigation Software Is a Must-Have for Singapore’s Banks