Compliance Hub

What is Intercompany Accounting?

Site Logo
Tookitaki
05 Jan 2021
8 min
read

What is Intercompany Accounting? 

Intercompany accounting stands for the processing and accounting of inter-company/internal financial activities and events that cross legal entities, branches, or national borders. This may include (but is not limited to) the sales of products and services, fee sharing, royalties, cost allocations, and financing activities. Intercompany accounting is a broader segment than accounting – it extends into various functions, which include finance, tax, and treasury. According to the accounting firm, Grant Thornton LLP, intercompany transactions account for 30-40% of the global economy, which amounts to almost $40 trillion annually, and is further ranked as the ‘5th most common cause of corporate financial restatements’.

A 3-Step Approach to Intercompany Accounting

The transactions are important for many reasons, such as compliance with local tax codes, accurate reporting, regulations, good governance in general, and accounting rules. Financial institutions that need to improve their intercompany accounting can use this 3-step approach to intercompany accounting to improve their performance:

  1. Establish Standards, Policies, and Procedures: The foremost step to improve intercompany accounting is to establish a consistent process that can help identify, authorize, and clear the intercompany transactions. Although it would be easier to go with automation as the initial step, since the manual processes serve as an issue (they do not have consistent standards), chances are that attempting to automate the intercompany accounting will turn into a failure.

The policies and procedures are meant to include a list of what products and services are supposed to be provided between subsidiaries, along with transfer pricing for each, and the level of authorization needed for any transaction. Some other specifications may include a list of designated intercompany accounts, rules to identify and complete transactions, and a schedule that has specific deadlines to clear the balances every month.

  1. Automate the processes: According to a survey by Deloitte on ‘Intercompany Accounting & Process Management’, 54% of the companies still rely on manual intercompany processing, 47% only have ad hoc netting capabilities, while 30% report a significant out-of-balance position. After the policies and procedures are integrated and followed, the next step is to go for automation. The reason behind this is that keeping up with thousands of transactions by using spreadsheets is an inefficient method – one that only increases the risk of having errors. Further, in the case of companies that have subsidiaries in various countries, it becomes even more challenging to keep track. Alongside this, dealing with the currency exchange rates, the local tax codes, and the different rules for accounting can make it impossible to complete the process on time.

Yet, not all accounting solutions can manage intercompany transactions. There is software designed for emerging companies, which does not typically support multiple business entities. This can be a critical limitation, as it makes identifying and matching the transactions between various subsidiaries a manual process.

The minimum requirement from the software is that it should be able to tag intercompany purchase orders and sales orders when they are created, and link them automatically. This will help the accounting team, as they will no longer have to search amongst thousands of transaction entries to find the matching pairs. The revenue and expenses of intercompany transactions should be removed automatically from consolidated financial statements, specifically during the closing process. Another requirement from the software system is that it should also include intercompany netting functionality, which not only saves time and effort during the settlement process, but also saves money by reducing the number of invoices that need to be generated, plus payments that have to be processed every month.

  1. Centralize: It is mainly the corporate accounting staff’s job to manage intercompany accounting, which means that most things get done as part of the closing procedure. Yet, as the accounting team has other responsibilities, it isn’t ideal to wait until the end of the month, as it would extend the close cycle. On its own, the intercompany elimination can add days to the procedure if it’s not automated, which has an impact on the timings of the reports. The added pressure to close the books at the earliest may also increase the risk of errors.

So, centralizing the intercompany accounting serves as one of the best practices, either under a select person, or, in case there is a larger volume of people, a group of individuals under the supervision of the corporate controller. While dedicating resources to manage an activity that isn’t categorized as strategic could be a bit hard to explain, the efficiencies that companies gain, along with the improved supervision of this process, eventually pays its dividends. Managing the process centrally requires visibility into all intercompany transactions, which is difficult for companies that rely on multiple, differing accounting systems. So, in case one truly wants to control the process, it’s difficult to manage the business with different subsidiaries on a single accounting platform.

Types of Intercompany Transactions 

The three main types of intercompany transactions include: downstream, upstream, and lateral. Let’s understand how each of these intercompany transactions is recorded in the respective unit’s books. Also, their impact, and how to adjust the financials that are consolidated.

  1. Downstream Transaction: This type of transaction flows from the parent company, down to a subsidiary. With this transaction, the parent company records it with the applicable profit or loss. The transaction is made transparent and can be viewed by the parent company and its stakeholders, but not to the subsidiaries. For example, a downstream transaction would be the parent company selling an asset or inventory to a subsidiary.
  2. Upstream Transaction: This type of transaction is the reverse of downstream and flows from the subsidiary to the parent entity. For an upstream transaction, the subsidiary will record the transaction along with related profit or loss. An example would be when a subsidiary might transfer an executive to the parent company for a time period, charging the parent company by the hour for the executive’s services. For such a case, the majority and minority interest stakeholders can share the profit/loss, as they share ownership of the subsidiary.
  3. Lateral Transaction: This transaction occurs between two subsidiaries within the same parent organization. The subsidiary/subsidiaries record their lateral transaction along with profit and loss, which is similar to accounting for an upstream transaction. For example, when one subsidiary provides IT services to another, with a fee.

Intercompany Transactions Accounting Importance

Intercompany transactions are of great importance, as they can help to greatly improve the flow of finances and assets. Studies on transfer pricing help to ensure that the intercompany transfer pricing falls within reach of total pricing in order to avoid any unnecessary audits.

Such intercompany transactions accounting can help with keeping records for resolving tax disputes, mainly in the countries/jurisdictions where the markets are upcoming and new, and where there is little to no regulation governing the related parties’ transactions. The following are a few areas that are affected by the use of intercompany transactions accounting:

  • Loan participation
  • Sales and transfer of assets
  • Dividends
  • Insurance policies
  • Transactions that have member banks and affiliates
  • The management and service fees

 

What is an Intercompany Transaction? 

Intercompany transactions happen when the unit of a legal entity makes a transaction with another unit of the same entity. There are many international companies that take advantage of intercompany transfer pricing or other related party transactions. This is to influence IC-DISC, promote improved transaction taxes, and, effectively, enhance efficiency within the financial institution. The transactions are essential to maximizing the allocation of income and deduction. Here are a few examples of such transactions:

  • Between two departments
  • Between two subsidiaries
  • Between the parent company and subsidiary
  • Between two divisions

There are two basic categories of intercompany transactions: direct and indirect intercompany transactions.

  1. Direct Intercompany Transactions: These transactions may happen from intercompany transactions between two different units within the same company entity. They can aid in notes payable and receivable, and also interest expense and revenues.
  2. Indirect Intercompany Transactions: These transactions occur when the unit of an entity obtains the debt/assets issued to another company that is unrelated, with the help of another unit in the original parent company. Such transactions can help various economic factors, including the elimination of interest expense on the retired debt, create gain or loss for early debt retirement, or remove the investment in interest and bond revenue.

Intercompany Accounting Best Practices

In a survey conducted in 2016 by Deloitte, which included over 4,000 accounting professionals, nearly 80% experienced challenges related to intercompany accounting. The issue was around differing software systems within and across financial institute units and divisions, intercompany settlement processes, management of complex legal agreements, transfer pricing compliance, and FX exposure. With issues such as multiple stakeholders, large transaction volumes, complicated entity agreements, and increased regulatory scrutiny, it’s clear that intercompany accounting requires a structured, end-to-end process. Here are some of the intercompany accounting best practices:

Streamline and Optimize the Process with Technology

It is counted as intercompany accounting best practices to have technology-enabled coordination and orchestration streamline intercompany accounting across the entire financial institution. Automation removes the burden of having to identify counterparties across various ERP systems. The integrated workflows ensure that tasks are completed in the correct order and in the most efficient timeframes, with the removal of any additional managers, who would waste their time chasing the completion of this task.

With automation, users can collaborate more easily and resources are deployed more efficiently. The employees who were previously occupied by keeping the data moving are freed to perform tasks of higher-value. With this, the result is faster resolution, along with timely and accurate elimination of intercompany transactions, cost savings, reduced cycle times, and an accelerated closing.

Streamline the Intercompany Process with a Single View

The elimination of intercompany transactions as a collaborative process requires the counterparties to have full visibility of their respective balances, along with the differences between them, and the underlying transactions. In an intragroup trade, too, counterparties need shared access to a common view of their intercompany positions.

With KPI monitoring, there is an overview of intercompany accounting status, which highlights potential delays in real-time and in a visual manner. The dashboards and alerts allow for companies to manage their progress in real-time, giving accounting professionals an overview of tasks that haven’t yet started or finished. With this visibility, team leaders can review bottlenecks by task, individual, cost center, as well as entity.

Eliminate Intercompany Mismatches Early on in the Process

In order to minimize delays around the agreement of intercompany differences, one needs to start the process prior to usual in the reporting cycle. By viewing intercompany mismatches this early on in the reporting cycle, individual companies can take remedial action and correct their positions before the consolidation is attempted.

The direct integration with the ERP systems allows financial institutes to extract invoice details to help reconcile differences in a more detailed manner. After resolving the differences, adjustments can be posted directly into ERP systems through the process, without manually posting reconciling journal entries. This is why automation effectively turns the intercompany process into a preliminary close, well in advance of the normal reporting cycle, every month.

Manage Intercompany Risk

One can eliminate endless standalone spreadsheets, which are typically used by individuals to manage intercompany accounting, by using an automated system that gives companies one version of the truth, along with an audit trail of activities detailing when and by whom they were completed. The workflows give the company employees ownership of every activity and eliminate the interdependencies of these tasks.

Financial institutes are able to orchestrate and monitor intercompany accounting as a fundamental part of their internal controls. The role-based security, aligned with the company’s underlying applications, maintains the integrity of roles and access. At the same time, one can attach or store procedures and policy documents in task list items, which are made immediately available to the people performing the intercompany tasks.

Devise Bullet-Proof Centralized Governance and Policies

For effective intercompany accounting, standard global policies are required to govern critical areas, such as data or charts of accounts, transfer pricing, and allocation methods. Companies may establish a center of excellence with joint supervision from accounting, tax, and treasury. It serves as a resource to address global process standardization and issues related to intercompany accounting. Having a single company-wide process would mean that companies adhere to best practices and give all finance stakeholders immediate visibility of issues, tasks, and bottlenecks that need escalation or remediation. This can help financial institutes benchmark their performance, address underlying issues, and facilitate post-close reviews. Further, it would help them to subsequently streamline activities in order to encourage a continuous process improvement and accelerate the close.

 

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
16 Sep 2025
6 min
read

AI in Fraud Detection in Banking: Transforming Australia’s Fight Against Financial Crime

With fraud moving faster than ever, Australian banks are turning to AI to detect and prevent scams in real time.

Fraud is one of the biggest challenges facing banks today. In Australia, losses to scams exceeded AUD 3 billion in 2024, with criminals exploiting digital banking, instant payments, and cross-border channels. Legacy systems, built for batch monitoring, cannot keep up with the scale and speed of these threats.

This is why AI in fraud detection in banking is rapidly becoming a necessity. Artificial intelligence allows institutions to detect suspicious activity in real time, adapt to new fraud typologies, and reduce the burden on compliance teams. In this blog, we explore how AI is reshaping fraud detection in Australia, the benefits it brings, and how banks can implement it effectively.

Talk to an Expert

Why Fraud Detection Needs AI

1. Speed of Real-Time Payments

The New Payments Platform (NPP) has transformed banking in Australia by enabling instant transfers. Unfortunately, it also allows fraudsters to move stolen funds before they can be recalled. AI is essential for monitoring and scoring transactions within milliseconds.

2. Evolving Typologies

From account takeover fraud to deepfake scams, criminals are constantly innovating. Static rules cannot keep up. AI models can detect unusual patterns that indicate new fraud techniques.

3. Rising Alert Volumes

Traditional systems flood investigators with false positives. AI reduces noise by distinguishing genuine risks from harmless anomalies.

4. AUSTRAC Expectations

Regulators demand effective monitoring and reporting under the AML/CTF Act 2006. AI provides transparency and scalability to meet these expectations.

How AI Works in Fraud Detection

1. Machine Learning Models

AI systems are trained on historical transaction data to identify suspicious behaviour. Unlike static rules, machine learning adapts over time.

2. Behavioural Analytics

AI monitors customer behaviour, such as login times, device usage, and transaction patterns, to flag unusual activity.

3. Anomaly Detection

AI identifies deviations from normal behaviour, such as sudden large transfers or new device access.

4. Natural Language Processing (NLP)

Used in screening communications or transaction details for suspicious intent.

5. Federated Learning

Allows banks to share insights on fraud patterns without exposing sensitive customer data.

Common Fraud Typologies Detected by AI

  1. Account Takeover (ATO): AI detects unusual login behaviour, device changes, and suspicious transfers.
  2. Authorised Push Payment (APP) Scams: Analyses transaction context and behavioural cues to flag high-risk payments.
  3. Mule Account Networks: Identifies linked accounts moving funds in rapid succession.
  4. Card-Not-Present Fraud: Flags unusual online purchase behaviour.
  5. Business Email Compromise (BEC): Detects unusual payment instructions and new beneficiary activity.
  6. Crypto Laundering: Monitors conversions between fiat and digital assets for anomalies.

Red Flags AI Helps Detect in Real Time

  • High-value transfers to new or suspicious beneficiaries.
  • Transactions inconsistent with customer profiles.
  • Multiple failed login attempts followed by success.
  • Rapid inflows and outflows with no account balance retention.
  • Sudden changes in customer details followed by large transfers.
  • Transfers to high-risk jurisdictions or exchanges.

Benefits of AI in Fraud Detection

1. Real-Time Monitoring

AI processes data instantly, essential for NPP and PayTo transactions.

2. Reduction in False Positives

Adaptive models cut down on irrelevant alerts, saving investigators’ time.

3. Faster Investigations

AI copilots summarise cases and recommend next steps, reducing investigation times.

4. Scalability

AI can handle increasing transaction volumes without needing large compliance teams.

5. Improved Regulatory Alignment

Explainable AI ensures alerts can be justified to AUSTRAC and other regulators.

6. Enhanced Customer Trust

Customers are more likely to trust banks that prevent fraud proactively.

ChatGPT Image Sep 15, 2025, 07_40_34 PM

Challenges in Deploying AI

  • Data Quality Issues: AI is only as good as the data it learns from.
  • Integration with Legacy Systems: Many banks still rely on outdated infrastructure.
  • Skills Shortages: Australia faces a lack of experienced data scientists and AML specialists.
  • Explainability Concerns: Black-box models may not meet AUSTRAC’s transparency expectations.
  • Cost of Implementation: High initial investment can be a barrier for smaller institutions.

Case Example: Community-Owned Banks Using AI

Community-owned banks like Regional Australia Bank and Beyond Bank are adopting AI-powered compliance platforms to strengthen fraud detection. These institutions demonstrate that advanced fraud prevention is not only for Tier-1 banks. By leveraging AI, they reduce false positives, detect mule networks, and meet AUSTRAC’s expectations, all while operating efficiently.

Spotlight: Tookitaki’s FinCense

FinCense, Tookitaki’s compliance platform, integrates AI at its core to deliver advanced fraud detection capabilities for Australian institutions.

  • Real-Time Monitoring: Detects suspicious activity across NPP, PayTo, and cross-border corridors.
  • Agentic AI: Learns from evolving fraud patterns and continuously improves accuracy.
  • Federated Intelligence: Accesses real-world typologies from the AFC Ecosystem.
  • FinMate AI Copilot: Summarises cases, recommends next steps, and drafts regulator-ready reports.
  • AUSTRAC Compliance: Generates Suspicious Matter Reports (SMRs) and maintains audit trails.
  • Cross-Channel Protection: Covers banking, cards, wallets, remittances, and crypto.

FinCense empowers banks to fight fraud proactively, cut compliance costs, and build customer trust.

Best Practices for Implementing AI in Fraud Detection

  1. Start with Data Quality: Clean, structured data is the foundation of effective AI.
  2. Adopt Explainable AI: Ensure every alert can be justified to regulators.
  3. Integrate Across Channels: Cover all payment types, from NPP to crypto.
  4. Train Staff on AI Tools: Empower investigators to use AI effectively.
  5. Pilot and Scale Gradually: Start small, refine models, then scale across the enterprise.
  6. Collaborate with Peers: Share insights through federated learning for stronger defences.

The Future of AI in Fraud Detection in Australia

  1. Deeper PayTo Integration: AI will play a critical role in monitoring new overlay services.
  2. Detection of Deepfake Scams: AI will need to counter AI-driven fraud tactics such as synthetic voice and video.
  3. Shared Fraud Databases: Industry-wide collaboration will improve real-time detection.
  4. AI-First Compliance Teams: Copilots like FinMate will become standard tools for investigators.
  5. Balance Between Security and Experience: AI will enable strong fraud prevention with minimal customer friction.

Conclusion

AI is transforming fraud detection in banking, particularly in Australia where real-time payments and evolving scams create unprecedented risks. By adopting AI-powered platforms, banks can detect threats earlier, reduce false positives, and ensure AUSTRAC compliance.

Community-owned banks like Regional Australia Bank and Beyond Bank prove that even mid-sized institutions can lead in AI-driven compliance innovation. For all financial institutions, the path forward is clear: embrace AI not just as a tool, but as a cornerstone of fraud detection and customer trust.

Pro tip: The most effective AI in fraud detection is transparent, adaptive, and integrated into the entire compliance workflow. Anything less leaves banks one step behind fraudsters.

AI in Fraud Detection in Banking: Transforming Australia’s Fight Against Financial Crime
Blogs
12 Sep 2025
6 min
read

Cracking the Case: Why AML Case Management Software is a Game Changer for Banks in Australia

As compliance risks mount, AML case management software is helping Australian banks move faster, smarter, and with greater confidence.

Introduction

Anti-money laundering (AML) compliance is not only about detecting suspicious activity. It is also about what happens next. Every suspicious matter must be investigated, documented, and, if necessary, reported to regulators like AUSTRAC. For banks and fintechs, the investigation process is often where compliance bottlenecks occur.

Enter AML case management software. These platforms streamline investigations, reduce manual work, and create regulator-ready records that satisfy AUSTRAC requirements. In Australia, where the New Payments Platform (NPP) has intensified real-time compliance pressures, case management has become a core part of the compliance tech stack.

Talk to an Expert

What is AML Case Management Software?

AML case management software provides a centralised platform for investigating, documenting, and resolving suspicious alerts. Instead of relying on spreadsheets, emails, and fragmented tools, investigators work within a single system that:

  • Collects alerts from monitoring systems.
  • Provides contextual data for faster decision-making.
  • Tracks actions and escalations.
  • Generates regulator-ready reports and audit trails.

In short, it is the engine room of AML compliance operations.

Why Case Management Matters in AML

1. Rising Alert Volumes

Banks generate thousands of alerts daily, most of which turn out to be false positives. Without case management, investigators drown in manual work.

2. AUSTRAC Expectations

Regulators require detailed audit trails for how alerts are reviewed, decisions made, and reports submitted. Poor documentation is a compliance failure.

3. Operational Efficiency

Manual workflows are slow and error-prone. Case management software reduces investigation times, freeing up staff for higher-value work.

4. Reputational Risk

Missed suspicious activity can lead to penalties and reputational damage, as seen in recent high-profile AUSTRAC enforcement cases.

5. Staff Retention

Investigator burnout is real. Streamlined workflows reduce frustration and improve retention in compliance teams.

Core Features of AML Case Management Software

1. Centralised Investigation Hub

All alerts flow into one platform, giving investigators a single view of risks across channels.

2. Automated Workflows

Routine tasks like data collection and alert assignment are automated, reducing manual effort.

3. Risk Scoring and Prioritisation

Alerts are prioritised based on severity, ensuring investigators focus on the most urgent cases.

4. Collaboration Tools

Teams can collaborate in-platform, with notes, escalation paths, and approvals tracked transparently.

5. Regulator-Ready Reporting

Generates Suspicious Matter Reports (SMRs), Threshold Transaction Reports (TTRs), and International Funds Transfer Instructions (IFTIs) aligned with AUSTRAC standards.

6. Audit Trails

Tracks every action taken on a case, creating clear evidence for regulator reviews.

7. AI Support

Modern platforms integrate AI to summarise alerts, suggest next steps, and reduce investigation times.

ChatGPT Image Sep 11, 2025, 12_30_12 PM

Challenges Without Case Management

  • Fragmented Data: Investigators waste time gathering information from multiple systems.
  • Inconsistent Documentation: Different staff record cases differently, creating compliance gaps.
  • Slow Turnaround: Manual workflows cannot keep up with real-time payment risks.
  • High Operational Costs: Large teams are needed to handle even moderate alert volumes.
  • Regulatory Exposure: Poorly documented investigations can result in AUSTRAC penalties.

Red Flags That Demand Strong Case Management

  • Customers sending high-value transfers to new beneficiaries.
  • Accounts showing rapid pass-through activity with no balances.
  • Cross-border remittances involving high-risk jurisdictions.
  • Unexplained source of funds or reluctance to provide documentation.
  • Device or location changes followed by suspicious transactions.
  • Multiple accounts linked to the same IP address.

Each of these scenarios must be investigated thoroughly and consistently. Without effective case management, important red flags may slip through the cracks.

Case Example: Community-Owned Banks Taking the Lead

Community-owned banks like Regional Australia Bank and Beyond Bank have adopted advanced compliance platforms with case management capabilities to strengthen investigations. By doing so, they have reduced false positives, streamlined workflows, and maintained strong AUSTRAC alignment.

Their success shows that robust case management is not just for Tier-1 institutions. Mid-sized banks and fintechs can also achieve world-class compliance by adopting the right technology.

Spotlight: Tookitaki’s FinCense

FinCense, Tookitaki’s end-to-end compliance platform, includes advanced case management features designed to support Australian institutions.

  • Centralised Investigations: All alerts flow into one unified case management system.
  • FinMate AI Copilot: Summarises alerts, suggests actions, and drafts regulator-ready narratives.
  • Federated Intelligence: Accesses real-world scenarios from the AFC Ecosystem to provide context for investigations.
  • Regulator Reporting: Auto-generates AUSTRAC-compliant SMRs, TTRs, and IFTIs.
  • Audit Trails: Tracks every investigator action for transparency.
  • Cross-Channel Coverage: Banking, wallets, remittances, cards, and crypto all integrated.

With FinCense, compliance teams can move from reactive investigations to proactive case management, improving efficiency and resilience.

Best Practices for AML Case Management in Australia

  1. Integrate Case Management with Monitoring Systems: Avoid silos by connecting transaction monitoring, screening, and case management.
  2. Use AI for Efficiency: Deploy AI copilots to reduce false positives and accelerate reviews.
  3. Document Everything: Ensure audit trails are complete, consistent, and regulator-ready.
  4. Adopt a Risk-Based Approach: Focus resources on high-risk customers and transactions.
  5. Invest in Staff Training: Technology is only as good as the people using it.
  6. Conduct Regular Reviews: Independent audits of case management processes are essential.

The Future of AML Case Management Software

1. AI-First Investigations

AI copilots will increasingly handle routine case reviews, leaving human analysts to focus on complex scenarios.

2. Integration with NPP and PayTo

Case management will need to handle alerts tied to real-time and overlay services.

3. Collaboration Across Institutions

Shared intelligence networks will allow banks to collaborate on fraud and money laundering investigations.

4. Predictive Case Management

Instead of reacting to alerts, future platforms will predict high-risk customers and transactions before fraud occurs.

5. Cost Efficiency Focus

With compliance costs rising, automation will be critical to keeping operations sustainable.

Conclusion

In Australia’s fast-paced financial environment, AML case management software is no longer optional. It is a necessity for banks, fintechs, and remittance providers navigating AUSTRAC’s expectations and real-time fraud risks.

Community-owned banks like Regional Australia Bank and Beyond Bank show that advanced case management is achievable for institutions of all sizes. Platforms like FinCense provide the tools to manage alerts, streamline investigations, and build regulator-ready records, all while reducing costs.

Pro tip: The best case management systems are not just about compliance. They help institutions stay resilient, protect customers, and build trust in a competitive market.

Cracking the Case: Why AML Case Management Software is a Game Changer for Banks in Australia
Blogs
11 Sep 2025
6 min
read

Inside Taiwan’s War on Scams: The Future of Financial Fraud Solutions

Fraudsters are innovating as fast as fintech, and Taiwan needs smarter financial fraud solutions to keep pace.

From instant payments to digital wallets, Taiwan’s financial sector has embraced speed and convenience. But these advances have also opened new doors for fraud: phishing, investment scams, mule networks, and synthetic identities. In response, banks, regulators, and technology providers are racing to deploy next-generation financial fraud solutions that balance security with seamless customer experience.

The Rising Fraud Challenge in Taiwan

Taiwan’s economy is increasingly digital. Contactless payments, mobile wallets, and cross-border e-commerce have flourished, bringing convenience to millions of consumers. At the same time, the risks have multiplied:

  • Social Engineering Scams: Romance scams and “pig butchering” schemes are draining consumer savings.
  • Cross-Border Syndicates: International fraud networks exploit Taiwan’s financial rails to launder illicit proceeds.
  • Account Takeover (ATO): Fraudsters use phishing and malware to compromise accounts, moving funds rapidly before detection.
  • Fake E-Commerce Merchants: Fraudulent sellers create websites or storefronts, collect payments, and disappear, eroding trust in digital platforms.
  • Crypto-Linked Fraud: With the rise of virtual assets, scams tied to unlicensed exchanges and token offerings have surged.

According to the Financial Supervisory Commission (FSC), fraud complaints involving online transactions have climbed steadily over the past three years. Taiwan’s Bankers Association has echoed these concerns, urging members to invest in advanced fraud monitoring and customer awareness campaigns.

Talk to an Expert

What Are Financial Fraud Solutions?

Financial fraud solutions encompass the frameworks, strategies, and technologies that institutions use to prevent, detect, and respond to fraudulent activities. Unlike traditional approaches, which often rely on siloed checks, modern solutions are designed to provide end-to-end protection across the entire customer lifecycle.

Key components include:

  1. Transaction Monitoring – Analysing every payment in real time to detect anomalies.
  2. Identity Verification – Validating users with biometric checks, device fingerprinting, and KYC processes.
  3. Behavioural Analytics – Profiling user habits to flag suspicious deviations.
  4. AI-Powered Detection – Using machine learning models to anticipate and intercept fraud.
  5. Collaborative Intelligence – Sharing typologies and red flags across institutions.
  6. Regulatory Compliance – Ensuring alignment with FSC directives and FATF standards.

In Taiwan, where payment volumes are exploding and scams dominate the headlines, these solutions are not optional. They are essential.

Why Taiwan Needs Smarter Fraud Solutions

Several factors make Taiwan uniquely vulnerable to financial fraud.

  • Instant Payments via FISC: The Financial Information Service Co. operates the backbone of Taiwan’s real-time payments. With millions of transactions per day, fraud can occur within seconds, leaving little room for manual intervention.
  • Cross-Border Exposure: Taiwan’s strong trade links and remittance flows expose banks to fraud originating abroad, often tied to organised crime.
  • High Digital Adoption: With rapid uptake of e-wallets and online banking, consumers are more exposed to phishing and fake websites.
  • Public Trust: Fraud scandals frequently make headlines, creating reputational risk for banks that fail to protect their customers.

Without robust solutions, financial institutions risk losses, regulatory penalties, and erosion of customer confidence.

ChatGPT Image Sep 10, 2025, 01_29_51 PM

Components of Effective Financial Fraud Solutions

AI-Driven Monitoring

Fraudsters continually adapt their methods. Static rules cannot keep up. AI-powered systems like Tookitaki’s FinCense continuously learn from evolving fraud attempts, helping banks identify subtle anomalies such as unusual login patterns or abnormal transaction velocity.

Behavioural Analytics

By analysing customer habits, institutions can detect deviations in real time. For example, if a user typically transfers small amounts domestically but suddenly sends large sums overseas, the system can raise alerts.

Federated Intelligence

Fraudsters target multiple institutions simultaneously. Sharing intelligence is key. Through Tookitaki’s AFC Ecosystem, Taiwanese institutions can access global fraud scenarios and typologies contributed by experts, enabling them to spot patterns that might otherwise slip through.

Smart Investigations

Compliance teams often struggle with false positives. FinCense reduces noise by applying AI to prioritise alerts, ensuring investigators focus on genuine risks while improving operational efficiency.

Customer Protection

Fraud prevention must protect without creating friction. Solutions that combine strong authentication, transparent processes, and smooth user experience help safeguard both customers and brand reputation.

Taiwan’s Regulatory Backdrop

The FSC has emphasised the importance of proactive fraud monitoring and has urged banks to implement real-time systems. Taiwan is also under the lens of FATF evaluations, which review the country’s AML and CFT frameworks.

Regulatory expectations include:

  • Comprehensive monitoring for suspicious activity.
  • Alignment with FATF’s risk-based approach.
  • Demonstrated capability to detect new and emerging fraud typologies.
  • Transparent audit trails that show how fraud alerts are handled.

Tookitaki’s FinCense addresses these requirements directly, combining explainable AI with audit-ready reporting to ensure regulatory alignment.

Case Study: Investment Scam Typology

Imagine a Taiwanese consumer is lured into a fraudulent investment scheme promising high returns. Funds are transferred into multiple mule accounts before being layered into overseas merchants.

Traditional rule-based systems may only flag the activity after multiple complaints. With FinCense, the fraud can be intercepted earlier. The platform’s federated learning detects similar patterns across institutions, recognising the hallmarks of mule activity and flagging the transactions in near real time.

This proactive approach demonstrates how advanced fraud solutions transform outcomes.

Technology at the Heart of Financial Fraud Solutions

The new era of fraud prevention in Taiwan is technology-driven. Leading platforms integrate:

  • Machine Learning Models trained on large and diverse fraud data sets.
  • Explainable AI (XAI) that provides clarity to regulators and compliance teams.
  • Real-Time Decision Engines that act within seconds.
  • Automated Dispositioning that reduces manual investigation overhead.
  • Cross-Border Data Insights that connect red flags across jurisdictions.

Tookitaki’s FinCense embodies this approach. Positioned as the Trust Layer to fight financial crime, it enables institutions in Taiwan to defend against fraud while maintaining operational efficiency and customer trust.

The Role of Consumer Awareness

Even the best technology cannot prevent every scam if customers are unaware of the risks. Taiwanese banks have a responsibility to educate consumers about common tactics such as smishing, fake job offers, and fraudulent investment opportunities.

Paired with AI-powered monitoring, awareness campaigns create a stronger, dual-layer defence. When customers know what to avoid and banks know how to intervene, fraud losses can be significantly reduced.

Building Trust and Inclusion

Fraud prevention is not just about stopping crime. It is also about building trust in the financial system. In Taiwan, where digital inclusion is a national priority, protecting vulnerable groups such as the elderly or first-time online banking users is critical.

Advanced fraud solutions ensure these groups can safely access financial services. By reducing fraud risk, banks help drive inclusion while protecting the integrity of the broader economy.

Collaboration Is the Future

Fraudsters are organised, networked, and global. Taiwan’s response must be the same. The future lies in collaborative solutions that connect institutions, regulators, and technology providers.

The AFC Ecosystem exemplifies this model, enabling knowledge sharing across borders and empowering institutions to stay ahead of evolving scams. Taiwan’s adoption of such frameworks can serve as a model for Asia.

Conclusion: Trust Is Taiwan’s Real Currency

In today’s financial system, trust is the currency that matters most. Financial fraud solutions are not only about protecting transactions but also about preserving confidence in the digital economy.

By leveraging advanced platforms such as Tookitaki’s FinCense, Taiwanese banks and fintechs can transform fraud prevention from a reactive defence to a proactive, intelligent, and collaborative strategy. The result is a financial system that is both innovative and resilient, positioning Taiwan as a leader in fraud resilience across Asia.

Inside Taiwan’s War on Scams: The Future of Financial Fraud Solutions