Compliance Hub

Fraud Prevention and Detection: Strategies for Financial Institutions

Site Logo
Tookitaki
6 min
read

Fraud prevention is critical for banks and other financial institutions to safeguard their assets and maintain customer trust. It involves implementing measures to stop fraud before it occurs. Fraud detection, on the other hand, involves identifying fraud once it has happened. Both are essential for a comprehensive fraud management strategy.

  • Fraud Prevention: Proactive measures to stop fraudulent activities.
  • Fraud Detection: Identifying and addressing fraud after it occurs.

Both approaches are vital, but they serve different roles in protecting financial institutions.

Creating efficient fraud detection and prevention strategies is crucial for Southeast Asia, as the region has witnessed a rise in online scam centres that are swindling billions of dollars from people. Transnational Crime in Southeast Asia, a report published by the United States Institute of Peace, estimates the annual value of funds stolen by scam syndicates across Southeast Asia at US$64 billion a year, with millions of victims across the world.  

What is Fraud Prevention?

Fraud prevention involves proactive measures to stop fraudulent activities before they occur. It includes implementing robust security systems, establishing strict internal controls, and continuously monitoring for potential threats. Financial institutions utilize advanced technologies like artificial intelligence and machine learning to analyze data patterns and identify anomalies indicative of fraud.

Employee training is also critical, ensuring that staff can recognize and respond to suspicious activities. By taking these steps, financial institutions can significantly reduce the risk of fraud and protect their assets and reputation.

  • A risk-based approach is fundamental in fraud prevention. This strategy assesses the potential risk associated with various transactions and customer profiles, allowing financial institutions to allocate resources efficiently and apply rigorous scrutiny where needed. High-risk transactions, for example, might undergo more detailed checks and monitoring.

Regularly updating security protocols and staying informed about emerging fraud techniques are also essential components of an effective fraud prevention strategy. By adopting these practices, financial institutions can stay ahead of fraudsters and maintain a secure financial platform.

{{cta-first}}

What is Fraud Detection?

Fraud detection is the process of identifying and addressing fraudulent activities that have already occurred. This involves real-time transaction monitoring and the use of sophisticated algorithms to spot unusual behaviour or transactions.

Companies employ technologies like behavioural analytics to detect patterns that deviate from a customer's typical behaviour, flagging them for further investigation. Effective fraud detection not only helps in catching fraud early but also minimizes potential financial losses and reputational damage.

Timely and accurate fraud detection requires a comprehensive approach. Integrating detection systems with other operations, such as customer relationship management (CRM) and transaction monitoring, provides a holistic view of customer activities and helps in identifying discrepancies.

Continuous improvement of detection systems, regular audits, and employee training are also crucial. By maintaining a vigilant and adaptive detection framework, financial institutions can swiftly respond to fraudulent activities and reinforce their overall security posture.

Essential Fraud Prevention Strategies for Banks and Financial Institutions

Implementing robust strategies for fraud prevention in banks and other financial institutions is crucial to mitigate risks and protect their operations. Here are some essential strategies:

  • Risk-based Approach: A risk-based approach is fundamental in fraud prevention as it allows banks and financial institutions to tailor their prevention measures according to the risk level associated with transactions and customers. By categorizing transactions based on their risk profile, institutions can allocate resources more efficiently and apply heightened scrutiny where needed. High-risk transactions, such as large fund transfers or unusual account activities, undergo thorough monitoring and verification processes to mitigate potential fraudulent activities.
  • Advanced Technology and AI: Leveraging cutting-edge technologies like artificial intelligence and machine learning is paramount in the fight against fraud. By harnessing the power of AI, financial institutions can delve deep into transaction data in real time, uncovering intricate patterns and swiftly identifying any anomalies that may indicate fraudulent activities. These advanced technologies offer a proactive approach to fraud prevention, enabling institutions to stay ahead of evolving fraud tactics and protect their assets with unparalleled efficiency and accuracy.
  • Integration with Other Systems: Integrating fraud prevention systems with customer relationship management (CRM) and transaction monitoring systems is crucial for financial institutions to gain a comprehensive view of customer activities. By seamlessly connecting these systems, institutions can enhance their ability to detect and prevent fraudulent activities effectively.
  • The integration of fraud prevention with CRM systems allows institutions to not only track customer interactions and behaviours but also to identify any irregularities or suspicious patterns that may indicate potential fraud. This holistic approach enables institutions to proactively address any fraudulent activities and protect their customers' assets.
  • Furthermore, integrating fraud prevention systems with transaction monitoring systems provides real-time insights into transactional activities, enabling institutions to quickly identify anomalies or deviations from normal behaviour. By analyzing transaction data alongside customer information, institutions can strengthen their fraud detection capabilities and respond promptly to any suspicious activities.

{{cta-whitepaper}}

Effective Fraud Detection Techniques

Fraud detection is equally important as prevention and involves continuously monitoring and analyzing transactions to identify suspicious activities. Here are some effective techniques:

  • Real-Time Transaction Monitoring: Continuously monitoring transactions in real time is a crucial aspect of fraud prevention and detection. By analyzing transactions as they occur, financial institutions can swiftly identify and flag any suspicious activities, allowing them to take immediate action to prevent potential fraud. This real-time monitoring not only helps in quickly pinpointing fraudulent behaviour but also enables institutions to stay one step ahead of fraudsters.
  • Behavioral Analytics: Behavioral analytics is a powerful tool used by financial institutions to delve deep into customer behaviour patterns and detect any irregularities that may signal potential fraudulent activity. By analyzing variables such as transaction types, frequencies, and amounts, financial institutions can pinpoint sudden changes or anomalies that could be red flags for fraudulent behaviour. For instance, if a customer who typically makes small, routine transactions suddenly starts making large, irregular transfers, this could be a cause for concern.
  • Anomaly Detection: Utilising sophisticated algorithms and cutting-edge technology, anomaly detection plays a crucial role in identifying deviations from typical transaction patterns that could indicate potential fraudulent activity. By analyzing a vast array of data points and transaction details, financial institutions can pinpoint irregularities that may go unnoticed by traditional detection methods.

Future Trends in Fraud Prevention and Detection

The fraud prevention and detection system landscape is rapidly evolving as financial criminals adopt more sophisticated methods. Financial institutions must leverage the latest technologies to enhance their fraud detection capabilities while ensuring compliance with evolving regulations.

Here are some key emerging trends shaping fraud prevention and detection systems in 2024 and beyond:

1. AI-Driven Fraud Detection
Artificial intelligence (AI) and machine learning (ML) are transforming fraud prevention and detection systems by:

  • Analyzing vast amounts of transaction data in real-time
  • Identifying hidden fraud patterns and reducing false positives
  • Adapting to evolving fraud tactics through continuous learning

With the rise of real-time payments (RTPs), AI-powered fraud detection is becoming a necessity for financial institutions to detect anomalies before fraudulent transactions are completed.

2. Cloud-Based Fraud Detection Systems
The shift to cloud-based fraud prevention solutions is accelerating due to:

  • Faster deployment and scalability
  • Seamless integration with banking ecosystems
  • Real-time compliance updates for evolving regulations

By 2026, over 70% of new fraud detection solutions for financial institutions will be vendor-hosted and managed, reducing operational costs and complexity.

3. Behavioral Biometrics for Fraud Prevention
Behavioral biometrics is gaining traction as a critical fraud detection mechanism, analyzing:

  • Keystroke dynamics, mouse movements, and touchscreen interactions
  • Anomalous user behavior to detect fraud before transactions occur
  • Real-time identity verification to prevent account takeovers

This approach adds an additional layer of security without disrupting the user experience.

4. Real-Time Transaction Monitoring and Automated Decisioning
Modern fraud prevention and detection systems are moving towards:

  • Real-time transaction monitoring to detect fraudulent activities instantly
  • Automated risk-based decision-making to approve, flag, or block transactions in milliseconds
  • Cross-channel fraud detection to prevent fraudsters from exploiting silos between banking products

5. Enhanced Fraud Intelligence Sharing and Collaboration
Regulators and financial institutions are emphasizing collaborative intelligence by:

  • Sharing fraud patterns and insights across banks and fintechs
  • Leveraging centralized fraud detection utilities for stronger defenses
  • Aligning fraud prevention strategies with global regulatory bodies

Final Thoughts

In today’s fast-evolving threat landscape, a robust fraud prevention and detection system is no longer optional—it is a necessity. Financial institutions must stay ahead of fraudsters by adopting AI-powered, real-time fraud detection solutions that provide scalability, accuracy, and proactive risk mitigation.

Tookitaki’s FinCense offers a next-generation fraud detection and prevention system designed to:

  • Ensure real-time fraud detection across multiple channels
  • Provide 100% risk coverage with adaptive AI-driven models
  • Reduce false positives and operational costs through smart automation

As fraud tactics become more sophisticated, institutions need solutions that continuously learn, evolve, and respond in real time. Take the next step in securing your organization—test FinCense today and build a future-proof fraud prevention strategy.

By submitting the form, you agree that your personal data will be processed to provide the requested content (and for the purposes you agreed to above) in accordance with the Privacy Notice

success icon

We’ve received your details and our team will be in touch shortly.

In the meantime, explore how Tookitaki is transforming financial crime prevention.
Learn More About Us
Oops! Something went wrong while submitting the form.

Ready to Streamline Your Anti-Financial Crime Compliance?

Our Thought Leadership Guides

Blogs
20 Jan 2026
6 min
read

What Makes the Best AML Software? A Singapore Perspective

“Best” isn’t about brand—it’s about fit, foresight, and future readiness.

When compliance teams search for the “best AML software,” they often face a sea of comparisons and vendor rankings. But in reality, what defines the best tool for one institution may fall short for another. In Singapore’s dynamic financial ecosystem, the definition of “best” is evolving.

This blog explores what truly makes AML software best-in-class—not by comparing products, but by unpacking the real-world needs, risks, and expectations shaping compliance today.

Talk to an Expert

The New AML Challenge: Scale, Speed, and Sophistication

Singapore’s status as a global financial hub brings increasing complexity:

  • More digital payments
  • More cross-border flows
  • More fintech integration
  • More complex money laundering typologies

Regulators like MAS are raising the bar on detection effectiveness, timeliness of reporting, and technological governance. Meanwhile, fraudsters continue to adapt faster than many internal systems.

In this environment, the best AML software is not the one with the longest feature list—it’s the one that evolves with your institution’s risk.

What “Best” Really Means in AML Software

1. Local Regulatory Fit

AML software must align with MAS regulations—from risk-based assessments to STR formats and AI auditability. A tool not tuned to Singapore’s AML Notices or thematic reviews will create gaps, even if it’s globally recognised.

2. Real-World Scenario Coverage

The best solutions include coverage for real, contextual typologies such as:

  • Shell company misuse
  • Utility-based layering scams
  • Dormant account mule networks
  • Round-tripping via fintech platforms

Bonus points if these scenarios come from a network of shared intelligence.

3. AI You Can Explain

The best AML platforms use AI that’s not just powerful—but also understandable. Compliance teams should be able to explain detection decisions to auditors, regulators, and internal stakeholders.

4. Unified View Across Risk

Modern compliance risk doesn't sit in silos. The best software unifies alerts, customer profiles, transactions, device intelligence, and behavioural risk signals—across both fraud and AML workflows.

5. Automation That Actually Works

From auto-generating STRs to summarising case narratives, top AML tools reduce manual work without sacrificing oversight. Automation should support investigators, not replace them.

6. Speed to Deploy, Speed to Detect

The best tools integrate quickly, scale with your transaction volume, and adapt fast to new typologies. In a live environment like Singapore, detection lag can mean regulatory risk.

The Danger of Chasing Global Rankings

Many institutions fall into the trap of selecting tools based on brand recognition or analyst reports. While useful, these often prioritise global market size over local relevance.

A top-ranked solution may not:

  • Support MAS-specific STR formats
  • Detect local mule account typologies
  • Allow configuration without vendor dependence
  • Offer support in your timezone or regulatory context

The best AML software for Singapore is one that understands Singapore.

The Role of Community and Collaboration

No tool can solve financial crime alone. The best AML platforms today are:

  • Collaborative: Sharing anonymised risk signals across institutions
  • Community-driven: Updated with new scenarios and typologies from peers
  • Connected: Integrated with ecosystems like MAS’ regulatory sandbox or industry groups

This allows banks to move faster on emerging threats like pig-butchering scams, cross-border laundering, or terror finance alerts.

ChatGPT Image Jan 20, 2026, 10_31_21 AM

Case in Point: A Smarter Approach to Typology Detection

Imagine your institution receives a surge in transactions through remittance corridors tied to high-risk jurisdictions. A traditional system may miss this if it’s below a certain threshold.

But a scenario-based system—especially one built from real cases—flags:

  • Round dollar amounts at unusual intervals
  • Back-to-back remittances to different names in the same region
  • Senders with low prior activity suddenly transacting at volume

The “best” software is the one that catches this before damage is done.

A Checklist for Singaporean Institutions

If you’re evaluating AML tools, ask:

  • Can this detect known local risks and unknown emerging ones?
  • Does it support real-time and batch monitoring across channels?
  • Can compliance teams tune thresholds without engineering help?
  • Does the vendor offer localised support and regulatory alignment?
  • How well does it integrate with fraud tools, case managers, and reporting systems?

If the answer isn’t a confident “yes” across these areas, it might not be your best choice—no matter its global rating.

Final Thoughts: Build for Your Risk, Not the Leaderboard

Tookitaki’s FinCense platform embodies these principles—offering MAS-aligned features, community-driven scenarios, explainable AI, and unified fraud and AML coverage tailored to Asia’s compliance landscape.

There’s no universal best AML software.

But for institutions in Singapore, the best choice will always be one that:

  • Supports your regulators
  • Reflects your risk
  • Grows with your customers
  • Learns from your industry
  • Protects your reputation

Because when it comes to financial crime, it’s not about the software that looks best on paper—it’s about the one that works best in practice.

What Makes the Best AML Software? A Singapore Perspective
Blogs
19 Jan 2026
5 min
read

AML Case Management Software: A Practical Guide for Banks and Fintechs

Financial institutions today face an uncomfortable reality. Detecting suspicious activity is no longer the hardest part of AML. Managing, investigating, documenting, and closing alerts at scale is. This is where AML case management software plays a critical role.

As alert volumes rise and regulatory expectations tighten, banks and fintechs need more than rule engines and dashboards. They need a structured, auditable, and efficient way to move from alert to closure. This guide explains what AML case management software is, why it matters, and how modern, AI-enabled platforms are reshaping investigations.

Talk to an Expert

What Is AML Case Management?

AML case management refers to the process and technology used to manage alerts, investigations, evidence, and regulatory outcomes once suspicious activity has been detected.

In simple terms:

  • Transaction monitoring flags alerts
  • Case management turns alerts into investigations
  • Investigations lead to decisions, documentation, and reporting

A case management system provides investigators with a central workspace to:

  • Review alerts
  • Gather and assess evidence
  • Collaborate with other teams
  • Document findings
  • Prepare regulatory reports such as STRs or SARs

Without a robust case management layer, even the best detection systems quickly become operational bottlenecks.

Why AML Case Management Matters More Than Ever

Alert volumes are increasing

Real-time payments, digital wallets, and cross-border transactions have dramatically increased alert volumes. Manual investigation processes simply do not scale.

Investigators are under pressure

Compliance teams face growing workloads, tight deadlines, and intense regulatory scrutiny. Inefficient workflows lead to:

  • Alert backlogs
  • Investigator fatigue
  • Inconsistent decision-making

Regulators expect stronger documentation

Supervisors increasingly expect:

  • Clear audit trails
  • Consistent investigation logic
  • Explainable decisions supported by evidence

AML case management software sits at the centre of these challenges, acting as the operational backbone of compliance teams.

Core Capabilities of AML Case Management Software

A modern AML case management platform typically includes the following capabilities:

Case creation and prioritisation

Alerts are automatically converted into cases, enriched with customer, transaction, and risk context. Risk-based prioritisation helps investigators focus on the most critical cases first.

Investigation workflows

Structured workflows guide investigators through each stage of the investigation, reducing variability and missed steps.

Evidence management

Documents, transaction records, screenshots, and notes are stored centrally within each case, ensuring nothing is lost or fragmented across systems.

Collaboration and escalation

Cases often require input from multiple teams. Case management software enables collaboration, escalation, and approvals within a controlled environment.

Audit trails and traceability

Every action taken on a case is logged, creating a defensible audit trail for internal reviews and regulatory examinations.

How AI Is Transforming AML Case Management

Traditional case management systems focused primarily on task tracking. Modern platforms are moving much further by embedding intelligence directly into investigations.

Assisted investigations

AI can surface relevant transactions, related parties, and historical patterns, reducing manual data gathering.

Smart workflows

Automation helps route cases, trigger actions, and apply consistent investigation steps based on risk level.

Faster alert closure

By reducing repetitive tasks and guiding investigators, AI-enabled case management significantly improves closure times without compromising quality.

The result is not fewer controls, but better, faster, and more consistent investigations.

Regulatory Expectations and Audit Readiness

From an examiner’s perspective, a strong AML programme is not just about detecting suspicious activity. It is about how decisions are made and documented.

AML case management software supports regulatory expectations by enabling:

  • Consistent investigation logic
  • Complete documentation of decisions
  • Easy retrieval of historical cases
  • Clear linkage between alerts, evidence, and outcomes

This is especially important during regulatory reviews, where institutions must demonstrate not only what decisions were made, but why.

ChatGPT Image Jan 17, 2026, 12_53_47 PM

How Banks and Fintechs Use AML Case Management in Practice

In a typical investigation flow:

  1. An alert is generated by the monitoring system
  2. A case is created and assigned automatically
  3. The investigator reviews contextual data and risk indicators
  4. Evidence is gathered and assessed within the case
  5. A decision is made, documented, and approved
  6. Regulatory reports are prepared if required
  7. The case is closed with a complete audit trail

Case management software ensures this process is repeatable, defensible, and scalable, even as volumes grow.

How Modern AML Platforms Approach Case Management

Modern AML platforms are increasingly embedding case management directly into their compliance architecture. Rather than treating investigations as a separate, manual process, leading solutions integrate case management with transaction monitoring and screening to create a continuous investigation workflow.

For example, Tookitaki’s FinCense platform integrates case management with transaction monitoring and screening, enabling investigators to move seamlessly from alert generation to investigation, documentation, and closure within a single workflow. This integrated approach helps institutions improve investigation efficiency while maintaining strong audit trails and regulatory readiness.

Choosing the Right AML Case Management Software

When evaluating AML case management solutions, institutions should look beyond basic task tracking.

Key considerations include:

  • Seamless integration with transaction monitoring and screening systems
  • Support for risk-based workflows
  • Strong audit and reporting capabilities
  • AI-assisted investigation features
  • Flexibility to adapt to local regulatory requirements

The goal is not just operational efficiency, but long-term compliance resilience.

Final Thoughts

AML case management software is no longer a supporting tool. It is a core pillar of modern AML operations.

As financial crime grows more complex, institutions that invest in intelligent, well-structured case management are better positioned to:

  • Reduce operational strain
  • Improve investigation quality
  • Meet regulatory expectations with confidence

In the broader AML ecosystem, case management is where detection becomes decision-making — and where compliance teams either struggle or succeed.

AML Case Management Software: A Practical Guide for Banks and Fintechs
Blogs
16 Jan 2026
5 min
read

From Firefighting to Foresight: Rethinking Transaction Fraud Prevention in Singapore

Fraudsters are playing a smarter game, shouldn’t your defences be smarter too?

Transaction fraud in Singapore is no longer just a security issue—it’s a strategic challenge. As payment ecosystems evolve, fraudsters are exploiting digital rails, behavioural loopholes, and siloed detection systems to slip through unnoticed.

In this blog, we explore why traditional fraud prevention methods are falling short, what a next-gen transaction fraud prevention framework looks like, and how Singapore’s financial institutions can future-proof their defences.

Talk to an Expert

Why Transaction Fraud is Escalating in Singapore

Singapore has one of the most advanced digital banking infrastructures in the world. But with innovation comes risk.

Key Drivers of Fraud Risk:

  • Real-time payments: PayNow and FAST leave little time for fraud detection.
  • Cross-border flows: Illicit funds are moved via remittance corridors and fintech platforms.
  • Proliferation of fintech apps: Fraudsters exploit weak KYC and transaction monitoring in niche apps.
  • Evolving scam tactics: Social engineering, deepfake impersonation, and phishing are on the rise.

The result? Singaporean banks are experiencing a surge in mule account activity, identity theft, and layered fraud involving multiple platforms.

What is Transaction Fraud Prevention?

Transaction fraud prevention refers to systems, strategies, and intelligence tools used by financial institutions to:

  • Detect fraudulent transactions
  • Stop or flag suspicious activity in real time
  • Reduce customer losses
  • Comply with regulatory expectations

The key is prevention, not just detection. This means acting before money is moved or damage is done.

Traditional Fraud Prevention: Where It Falls Short

Legacy fraud prevention frameworks often rely on:

  • Static rule-based thresholds
  • After-the-fact detection
  • Manual reviews for high-value alerts
  • Limited visibility across products or platforms

The problem? Fraud today is fast, adaptive, and complex. These outdated approaches miss subtle patterns, overwhelm investigators, and delay intervention.

A New Framework for Transaction Fraud Prevention

Next-gen fraud prevention combines speed, context, intelligence, and collaboration.

Core Elements:

1. Real-Time Transaction Monitoring

Every transaction is assessed for risk as it happens—across all payment channels.

2. Behavioural Risk Models

Fraud detection engines compare current actions against baseline behaviour for each customer.

3. AI-Powered Risk Scoring

Advanced machine learning models assign dynamic risk scores that influence real-time decisions.

4. Federated Typology Sharing

Institutions access fraud scenarios shared by peer banks and regulators without exposing sensitive data.

5. Graph-Based Network Detection

Analysts visualise connections between mule accounts, devices, locations, and beneficiaries.

6. Integrated Case Management

Suspicious transactions are directly escalated into investigation pipelines with enriched context.

Real-World Examples of Preventable Fraud

✅ Utility Scam Layering

Scammers use stolen accounts to pay fake utility bills, then request chargebacks to mask laundering. These can be caught through layered transaction patterns.

✅ Deepfake CEO Voice Scam

A finance team almost transfers SGD 500,000 after receiving a video call from a “CFO.” Behavioural anomalies and device risk profiling can flag this in real-time.

✅ Organised Mule Account Chains

Funds pass through 8–10 sleeper accounts before exiting the system. Graph analytics expose these as coordinated rather than isolated events.

The Singapore Edge: Localising Fraud Prevention

Fraud patterns in Singapore have unique characteristics:

  • Local scam syndicates often use SingPass and SMS spoofing
  • Elderly victims targeted through impersonation scams
  • Fintech apps used for layering due to fewer controls

A good fraud prevention system should reflect:

  • MAS typologies and alerts
  • Red flags derived from real scam cases
  • Adaptability to local payment systems like FAST, PayNow, GIRO
ChatGPT Image Jan 16, 2026, 11_40_33 AM

How Tookitaki Enables Smart Transaction Fraud Prevention

Tookitaki’s FinCense platform offers an integrated fraud and AML prevention suite that:

  • Monitors transactions in real-time using adaptive AI and federated learning
  • Supports scenario-based detection built from 1,200+ community-contributed typologies
  • Surfaces network-level risk signals using graph analytics
  • Auto-generates case summaries for faster STR filing and reporting
  • Reduces false positives while increasing true fraud detection rates

With FinCense, banks are moving from passive alerts to proactive intervention.

Evaluating Transaction Fraud Prevention Software: Key Questions

  • Can it monitor all transaction types in real time?
  • Does it allow dynamic threshold tuning based on risk?
  • Can it integrate with existing AML or case management tools?
  • Does it use real-world scenarios, not just abstract rules?
  • Can it support regulatory audits with explainable decisions?

Best Practices for Proactive Fraud Prevention

  1. Combine fraud and AML views for holistic oversight
  2. Use shared typologies to learn from others’ incidents
  3. Deploy AI responsibly, ensuring interpretability
  4. Flag anomalies early, even if not yet confirmed as fraud
  5. Engage fraud operations teams in model tuning and validation

Looking Ahead: Future of Transaction Fraud Prevention

The future of fraud prevention is:

  • Predictive: Using AI to simulate fraud before it happens
  • Collaborative: Sharing signals across banks and fintechs
  • Contextual: Understanding customer intent, not just rules
  • Embedded: Integrated into every step of the payment journey

As Singapore’s financial sector continues to grow in scale and complexity, fraud prevention must keep pace—not just in technology, but in mindset.

Final Thoughts: Don’t Just Detect—Disrupt

Transaction fraud prevention is no longer just about stopping bad transactions. It’s about disrupting fraud networks, protecting customer trust, and reducing operational cost.

With the right strategy and systems in place, Singapore’s financial institutions can lead the region in smarter, safer finance.

Because when money moves fast, protection must move faster.

From Firefighting to Foresight: Rethinking Transaction Fraud Prevention in Singapore